- 6
- 7

9 Derive the equation of Continuity for time varying fields. 12M

OR

10 Derive an expression for motional and transformer induced emf. 12M

*** END ***

Q.P. Code: 1	6EE214		
Reg. No:			

	SIDDHA	RTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR		
	B.Tech I	I Year II Semester (R16) Regular Examinations May/June 2018		
		ELECTROMAGNETIC FIELDS		
		(ELECTRICAL & ELECTRONICS ENGINEERING)		
Т	Time: 3 hours	Max. Ma	rks: 60	
		(Answer all Five Units 5 X 12 = 60 Marks) UNIT-I		
	A circle, centre	d at the origin with radius of 2 units, lies in the xy plane. Determine the		
1	unit vector in re	ectangular components that lies in the xy plane, is tangent to the circle at	12M	
	$(\sqrt{3}, 1, 0)$, and	is in the general direction of increasing values of y.		
	Th			
	The surfaces ρ =	z_3 , $\rho=5$, $\Psi=1000$, $\Psi=1300$, $z=3$, and $z=4.5$ define a closed surface.		
2	(a) Find enclose (b) Find the tota	al area of analoging surface	1014	
4	(b) Find the tota (a) Find the tota	al length of the twelve edges of the surfaces	12111	
	(d) Find the len	ath of longest straight line that lies entirely within the volume		
_		UNIT-II		
3	a. Derive the o	expression for electric field intensity at a point due to electric dipole.	6M	
	b Derive an e	xpression for electric potential due to point charge.	6M	
	T • • •			
4	Four point char	ges each of 10μ C are placed in free space at the point (1, 0, 0), (-1, 0, 0),	1014	
4	$(0, 1, 0)$ and $(0, -1, 0)$ m respectively. Determine the force on a point charge of 30μ C 12			
	located at a poin	UNIT-III		
	At the boundary	y between glass $\varepsilon r=4$ and air, the lines of electric field make an angle of		
5	400 with norm	al to the boundary. If electric flux density in the air is 0.25μ C/m3.	12M	
	Determine the c	prientation and magnitude of electric flux density in the glass.		
		OR	01	
6	a. Derive the o	expression for parallel plate capacitor.	6M	
	what is the	e energy stored in a capacitor made of two parallel metal plates each of	<u>A</u>	
	D. 30 Cm2 area	a separated by 5mm in air. $\varepsilon_0 = 8.854 \times 10^{-12}$. The capacitor is charged to	OIVI	
	potential di	Interence of 500V.		
	D 1 1			
7	Derive the expr	ession for forque produced on a closed current carrying when placed in a	12M	
	magnetic field.	OD		
	- T-1' 1			
8	a. Explain rel	ationship between magnetic torque and moment.	6M	
	D. Derive an e	expression for the force between two current carrying wires.	OM	
		UNIT-V		